Additive manufacturing of metals: a brief review of the characteristic microstructures and properties of steels, Ti-6Al-4V and high-entropy alloys

نویسندگان

  • Stéphane Gorsse
  • Christopher Hutchinson
  • Mohamed Gouné
  • Rajarshi Banerjee
چکیده

We present a brief review of the microstructures and mechanical properties of selected metallic alloys processed by additive manufacturing (AM). Three different alloys, covering a large range of technology readiness levels, are selected to illustrate particular microstructural features developed by AM and clarify the engineering paradigm relating process-microstructure-property. With Ti-6Al-4V the emphasis is placed on the formation of metallurgical defects and microstructures induced by AM and their role on mechanical properties. The effects of the large in-built dislocation density, surface roughness and build atmosphere on mechanical and damage properties are discussed using steels. The impact of rapid solidification inherent to AM on phase selection is highlighted for high-entropy alloys. Using property maps, published mechanical properties of additive manufactured alloys are graphically summarized and compared to conventionally processed counterparts.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An investigation on metallurgical and mechanical properties of vacuum brazed Ti-6Al-4V to 316L stainless steel using Zr-based filler metal

Both Ti-6Al-4V and 316L stainless steels are widely used as engineering alloys. Fusion welding of these two alloys is not easily possible due to their incomplete solubility in each other. Brazing is one of the best choices for joining dissimilar alloys. In this study, wettability experiments were done at 940 and 970 ºC for 5, 15 and 30 min. Also, joining of these two alloys was carried out at 9...

متن کامل

MICROSTRUCTURE, HARDNESS AND SURFACE ROUGHNESS CHARACTERIZATION OF EBM FABRICATED Ti-6Al-4V SAMPLES

Electron beam melting (EBM) is among the modern additive manufacturing processes whereby metal powders are selectively melted to produce very complicated components with superior mechanical properties. In this study, microstructure, hardness, and surface roughness of EBM fabricated Ti6Al4V samples were characterized. The results showed that the microstructure consisted of epitaxially-grown prim...

متن کامل

Survey and Study of Machinability for Titanium Alloy Ti-6Al-4V through Chip Formation in Milling Process

Most of the materials used in the industry of aero-engine components generally consist of titanium alloys. Advanced materials, because of their excellent combination of high specific strength, light weight and general corrosion resistance. In fact, chemical wear resistance of aero-engine alloy provides a serious challenge for cutting tool material during the machining process. The reduction in ...

متن کامل

Survey and Study of Machinability for Titanium Alloy Ti-6Al-4V through Chip Formation in Milling Process

Most of the materials used in the industry of aero-engine components generally consist of titanium alloys. Advanced materials, because of their excellent combination of high specific strength, light weight and general corrosion resistance. In fact, chemical wear resistance of aero-engine alloy provides a serious challenge for cutting tool material during the machining process. The reduction in ...

متن کامل

Investigation of the mechanical properties and microstructure of the Ti-6Al-4V to Al2024 joint fabricated by successive- stage transient liquid phase (S-TLP) method

The aim of this study is investigation of TLP variables on microstructure and mechanical properties of Al2024 to Ti-6Al-4V bonding for TLP joint. For this purpose, the sheets were prepared with dimension of 130×32×3 mm from Ti-6Al-4V and Al2024 alloys and 50µm thick Sn-5.3Ag-4.2Bi foil as interlayer. Sn-5.3Ag-4.2Bi foil prepared with dimension of 32×25 mm. Two alloys was joint together by proce...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 18  شماره 

صفحات  -

تاریخ انتشار 2017